
We now have a weight vector for the test image, representing the weights of each eigenface in 

this image. In the training data, we have the average weight vector for each person in the 

database. To find which person's face is in the test image, we iterate over all the individuals in 

the database, and find which person's average weight vector is closest to the weight vector for 

the test image. As we iterate through the database, we compute the Euclidean distance between 

the current person's average weight vector and the test image's weight vector. For example, if 

we had weight vectors q and p with k elements each, the distance between these vectors would 

be given by:

𝑑 = (𝑞1−𝑝1)2 + (𝑞2−𝑝2)2 +⋯+ (𝑞𝑘−𝑝𝑘)2

Since we are operating under the assumption that 

the test image contains the face of a person in our 

training dataset, we conclude that the person in 

the test image is the person whose average 

weight vector is closest to that of the test image.

We wrote a function to simplify this part of the

algorithm. It returns the index in the list of subjects

of the person whose face is in the test image.

such that 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑘 and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑘. We set a threshold 𝜀 on the total variance (In 

this case, we found that a threshold around 0.8 was reasonable, and anything much less 

produced incorrect results).

Next, we minimize k in the equation above (where n x m is the number of pixels in an image and 

the number of eigenfaces after SVD). Then we choose the first k eigenfaces in the matrix U and 

discard the rest.

We implemented an eigenface algorithm using the MATLAB language and integrated 

development environment. An article by Wikipedia on eigenfaces1 was the main source of the 

information we used to design this algorithm. The data we used was a set of different images 

each of 15 different people from the Yale Face Database2.

The settings in this portion of code 

allow users to specify the 

directory in which images are 

located and the factor by which to 

scale images. We can also choose which subjects and scenes are used to construct the training 

data set. Furthermore, this code allows us to set a threshold on total variance for principal 

component analysis and choose which image will be used for testing the algorithm.
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The first step, as in any computer program, is 

to get the data. We created a function to read 

images from the database. This function 

reads the appropriate images as specified 

by the settings earlier in the code. It is used 

to construct a matrix containing each of the 

training images as a column vector.

We call the function to obtain all the images 

in the directory of faces that have a GIF extension, and filter out any images that were not 

included in the settings for training subjects and scenes.

Now that we have a matrix with columns of 

image vectors, we take the element-wise mean 

of all the columns to get the average face. We 

then subtract this average face vector from every column 

In the training image matrix to get a matrix of differences 

from the average face, where each column vector is the

difference between that image and the average face.

With a matrix containing the differences between each training image and the average face, we 

now perform singular value decomposition (SVD) on the matrix. MATLAB has a handy function 

designed specifically for SVD. Given a matrix A, it returns three matrices U, Σ, and V, such that 

A = UΣVT. The matrices U and V are square orthonormal matrices containing singular vectors of A.

In this case, we are interested in the matrix U, because the vectors in U have the same dimension 

as the image vectors in our training dataset. The columns of U are eigenfaces. In principal, any 

face can be represented as a combination of eigenfaces. So we use eigenfaces to represent the 
characteristics of faces in our dataset.

Computer vision involves the use of linear algebra to obtain and manipulate useful information 

from images. One specific domain of computer vision is facial recognition. Essentially, facial 

recognition is the use of computers to identify several unique images of one person’s face as 

being images of the same person. Facial recognition is used in security and social media, among 

other applications.

The eigenface approach to facial recognition relies on concepts from linear algebra. In this 

approach, images are represented as matrices of pixels, and they are analyzed using singular 

value decomposition and projection onto eigenvectors. The eigenvectors used in facial 

recognition are often referred to as eigenfaces.

In order to implement this algorithm for facial recognition, we had to make several assumptions 

about the data being used:

• Faces are already in greyscale image

• Images are in GIF format and are all the same size

• Pictures contain only human faces

• People aren’t making extreme facial expressions

• Each person’s entire face is contained within the image and are in the same position

• People aren’t wearing masks

[1] “Eigenface.” Wikipedia, Wikimedia Foundation, 1 Apr. 2019, en.wikipedia.org/wiki/Eigenface.

[2] MIT Media Lab: VisMod Group, vismod.media.mit.edu/vismod/classes/mas622-00/datasets/.

At this point, we have a collection of the most important (principal) eigenfaces from our training 

dataset. However, the number of eigenfaces is not necessarily (or probably) the same as the 

number of people in our set of training images. To simplify the representation of a training 

image, we subtract the mean face from that image and project the difference onto each 

eigenface to get the weight of that eigenface. Matrix multiplication of the difference vector and a 

matrix with eigenfaces as rows will yield a weight vector.

In our code, we computed the weight vector for each training image and then averaged the 

weight vectors of all the images for each person. This way, we only need to store a single 

average weight vector for each person. This portion of code constructs a matrix where each 

column is the average weight vector for an individual person in the training dataset.

After training our model we read in a test image and concatenate the pixels into a column 

vector, exactly as we did in the training process. The next step is to subtract the average face 

from the image vector to get the difference vector for our test image.
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After the SVD step, we could be left with an abundance 

of eigenfaces. But to represent a new or existing face, 

we may not need all the eigenfaces. Therefore, we 

choose the eigenfaces that are important and discard 

the rest.

From the matrix Σ, we can square each singular value 

to obtain the corresponding eigenvalue. The singular 

values (and therefore the corresponding eigenvalues as 

well) are listed in descending order,

We wrote a function in MATLAB to simplify this step. The function computes the total variance 

with all eigenvalues and decrements the number of principal components (k) until it 

finds that the threshold would no longer be satisfied and 

returns the number of principal components. With this 

abstraction, we call the function from our driver program.
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In the training process, we picked a small number of images in the Yale database2 to exclude 

from our training data set. From these images that were excluded during training, we choose 

one to test the algorithm. This image contains the face of one of the people in our training 

dataset, but this unique image was not included in training.

After we processed the training images, we were left with a matrix containing column vectors 

that represent the average weight vector for each person in the training dataset. Similarly, we 

compute the weight vector for the test image by projecting it onto the matrix of eigenfaces. 

Now we have a good way to compare the test image with each 

of the people from our training dataset.

Results
The algorithm we implemented works with a variety of training/test image sets from the Yale 

database2. Here, we show the test with the settings written in code in the beginning of the 

Algorithm section. Trained on 10 different images of each of the 15 people on the left, this code 

correctly identified the image on the right.

𝜎1 0 ⋯ 0

0 𝜎2 ⋮

⋮ ⋱ 0

⋮ 𝜎𝑡

⋮ ⋮

0 ⋯ ⋯ 0

𝛴


